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A symbiotic fusion scheme is introduced. In the first phase of the process, a low-
density current of deuterons propagates in a circular tunnel in the interior of a block of
single-crystal Li6D with cubic crystal structure. Energy of the deuterons is limited by
the condition that they not be neutralized by collisions with the tunnel wall. Deuteron
current is driven through a rapidly rising magnetic field normal to the plane of the
loop. Because of the coupling of the beam to the periodic array of molecules in the
host, the beam goes into extended states. At the critical temperature (Tc ≈ 9.07 K)
it becomes superconducting and with sufficient wave function overlap in this phase,
it is proposed that fusion takes place. A superconducting product wave function is
given by Gaussian space components and spin-1 functions polarized in the direction
of the applied magnetic field. The Landau–Ginzberg equation is employed to calculate
the coherence length for this process which is found to be of the order of the spread
of the Gaussian per period of the wave function. This value of coherence length is
consistent with significant wavefunction overlap. In the second phase, for a cubic fuel
sample of edge length 15 cm, emitted particles interact with the host nuclei in a chain
reaction. Assuming a probability of 0.01 that deuterons in the superconducting loop
fuse, in 1 ms the device produces a yield≈ 0.2 GJ. Injection and magnetic rise-time
intervals are described and the interval over which the beam goes simultaneously to
a superconducting phase from an extended state that fills the current tube. A model
is described for this process that gives a criterion for the onset of fusion. A study of
deuteron interaction in the superconducting state leads to a requirement for the tensile
strength of the tunnel material. Another study derives the property that the Coulomb
singularity between deuterons is reduced in the superconducting phase.

KEY WORDS: fusion; wave function overlap; bosons; correlation length; deuterons;
superconductivity; symbiotic scheme.

1. INTRODUCTION

Both magnetic and inertial confinement processes for attaining thermonuclear
fusion have shown promise in recent years (Janev and Drawin, 1993; Liboff, 1979;
Lindl, 1998; Ogansian, 2001) In the present work a noncontinuous process is
described on the basis of the following. In the first phase of the process, it is
proposed that if a beam of deuterons can be made to enter a superconducting
phase then with sufficient wave function overlap, fusion may result. A means of
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achieving this phase is described in terms of a current of deuterons propagating in
a circular tunnel within a block of single-crystal Li6D with cubic crystal structure
(fcc). The lattice constant of this material is (4.08Å) (Ashcroft and Mermin, 1967).
The crystal melts at 692◦C. Deuteron energies are restricted by the condition that
they not be neutralized in collisions with the tunnel wall.

The deuteron current in the tunnel interacts with the periodic potential field
of the host crystal and goes into extended states. At a critical low temperature, the
deuterons enter a superconducting phase and for sufficiently large wave function
overlap in this phase (Ishihara, 1971; Pathria; 1972), it is envisioned that fusion
takes place. The superconducting wave function is taken to be a product of single-
particle Gaussians and single particle spin-1 states. The Landau–Ginzberg equation
(Landau and Ginzberg, 1950) is employed to calculate the coherence length for
the system whose value is consistent with significant wave function overlap. Emit-
ted particles then interact with nuclei of the host crystal in a chain reaction that
produces the yield. A criterion for the onset of fusion of the system in terms of
the extended dimension of a deuteron is described. Three appendices are included.
In Appendix A an approximation is made of forces exerted on the confining tun-
nel due to Coulomb expansion of the beam. In Appendix B an approximation of
the interdeuteron force in the superconducting state of the beam is made that is
significantly larger than the Coulomb expansion force. In Appendix C, a study
of the interaction of a deuteron and its nearest neighbor in the superconducting
phase, indicates that at small separation, the Coulomb singularity is diminished.
A balance of deuteron density in the confinement tunnel enters the analysis such
that if this parameter is too large, the confinment tunnel is unable to support the
beam and if it is too small, the fusion yield drops to inefficient values. Three
mutually inclusive time intervals enter the analysis: the deuteron-beam injection
time, the rise time of the imposed magnetic field, and the operational time of the
device.

2. ANALYSIS

In the configuration under study, deuterons in a circular tunnel within a block
of single-crystal Li6D are made to propagate with the application of a rapidly rising
magnetic field normal to the plane of the current loop. The beam enters the circular
domain though a magnetically shielded cylinder (i.e., material of high magnetic
permeability) and connects tangent to the circular tunnel. Consistent with values
contained in the relations (4b,6,17), the beam is composed of 1 eV deuterons with
current,I ' 110µA. At the circular radius 0.05 m, this current fills the tunnel in
the intervalT ' π × 10−5 s at which point the feed-current cuts off.

As a charged particle in the presence of a dielectric interacts with its image
in the dielectric (Jackson, 2001), the current exists in a region with a periodic
potential and goes into extended states. Since deuterons are bosons (spin 1), under
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proper conditions, the current will undergo a transition to a superconducting state
(Blatt, 1964; Ibach and L¨uth, 1990; London, 1954). Because of the interaction
(McMurry and Fay, 1997)

Lid + H2O→ HD+ LiOH, (1)

the device should be operated in a dry room. This crystal does not interact with
oxygen at room temperature and below (Lide, 1999).

A rough estimate of this superconducting transition temperature is obtained
as follows. We note that the primary microscopic length in the problem is the
lattice constant,a. Settinga equal to the thermal deBroglie wavelength (Pathria,
1972) gives the critical temperature

Tc ≈ h2/2πMa2kB ≈ 9.07 K (2)

whereM is deuteron mass,kB is Boltzmann’s constant, andh is Planck’s constant.
At this transition, the current continues with no resistance and any applied magnetic
field is expelled from the current loop (Ibach and L¨uth, 1990), according to which,
the emf of the deuteron current due to a time-changing magnetic field normal to
the plane of the ring is given by (Jackson, 2001), (SI)

8̇ = −
∮

E · d` = −2πRρ J (3)

where a dot denotes time differentiation,E is electric field,d` is element of arc
length of the current loop,8 is magnetic flux,ρ is electrical resistivity,J is current
density, andR is the radius of the current loop, defined as follows. We take the
plane of the loop to be the plane through the outer perimeter of the circular tunnel.
The intersection of the tunnel with a plane normal to the plane of the loop that
divides the tunnel into two congruent sections, gives two circles whose centers are
separated by 2R. The midpoint of this separation is called the center of the loop.
If r is the radial location of a deuteron, measured from the center of the loop, then
it is assumed thatr ' R.

If the current tube has cross-sectionA, the related line current is given by
I = AJ. Thus,

8̇ = −2πRIρ/A ' BπR2/τ (4a)

whereτ is the rise time of the magnetic field,B. Equivalently, we may write

|B(W/m2)| ' 2Iρτ

R A
(4b)

With the values,R= 0.05 m, A ≡ πd2/4= 10−10m2, I ' 110 µA, τ ' π ×
10−4 s, whered is the diameter of the current beam. Note that this rise time of the
magnetic field is larger than the feed time of the deuteron beam by a factor of 10.
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Viewing the deuteron current loop as a moderately good conductor, we set
(Lide, 1999)ρ ' 10−6ohm− m. With these values we obtain

|B| ' 1.4× 10−2(W/m2) (4c)

We recall 1 W/m2 = 104G. It follows that

|B(G)| ' 0.14 kG (4d)

This estimate implies that a magnetic field over a circular domain of 25 cm2

that rises to 0.14 kG in 1 ms will produce a current of 110µA in a circular
current loop about the domain. In practice, the magnetic field rises to its peak
value and maintains this value in partial confinement of the current loop. In the
superconducting phase, the related magnetic flux is a multiple of the fluxoid,
80 = 2.0679× 10−7 G - cm2 (Ashcroft and Mermin, 1967). In a closely allied
work it was shown that the ground state of an aggregate of interacting deuterons
in a magnetic field has spins polarized in the direction of the field (Liboff, 1994).

We note the deuteron tunnel-wall interaction,

LiD + D+ → D2+ Li+, (5)

To circumvent this as well as other problems, a thin film of amorphous material
inert to hydrogen, with roughly the same dielectric constant≈ 13.0, ofLi D , and
ionization energy&7.7 eV, the ionization energy ofLi D (Lide, 1999), coats the
interior of the circular tunnel. An additional requirement is that of the tensile
strength of the tunnel material required to confine the beam against Coulomb
expansion and deuteron interaction, has the value&0.229 Nt/cm (see Appendix B).

Deuteron energies are limited to values at which they will not be neutralized in
collision with the tunnel wall. So deuterons may enter the system at energy.7.0 eV.
When the temperature of the system is lowered to the critical value,'9.07 K,
deuterons thermalize in collisions with the tunnel wall to this temperature. We
note that the range of the nuclear force for the deuteron is,rD = 2.3× 10−13 cm.
To assist against Coulomb instability of the beam, we stipulate that the mean
inter-deuteron displacement is

r̄D ≈ (108/2.1)rDcm= 1.1× 10−5cm (6a)

which corresponds to the number density

n ≈ 1/(r̄D)3 ≈ 7.5× 1014cm−3 (6b)

The proposed extended state is enhanced by the property that 74% of the probability
density of the deuteron lies outside the nuclear core (Blatt and Weisskopf, 1957;
Meyerhoff, 1955). For future reference we label this extended displacement,r ∗D.

The Bloch wave function of a particle in the beam is given by

ψ(r ) = ei k·ru(r ) (7)
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whereu(r ) is a periodic function with period given by the lattice constant andk
represents “crystal momentum.” As noted above, the displacementr occurs near
the radius of the loop. Note that the proposed superconducting state is not the
canonical superconductivity of metals involving Cooper pairs, but rather that of a
propagating bose fluid (Ishihara, 1971; London, 1954, Pathria, 1972).

3. WAVE FUNCTION OVERLAP

As the configuration has circular symmetry, it suffices to consider deuteron
overlap per unit periodic element, that is, per lattice constant of the dielectric. This
overlap is given by

3 = 1

δ

∫
dxu∗α(x)uβ(x + a) (8)

whereα andβ are particle numbers,x represents displacement along the current
loop, and the integral is over adjacent cells. The parameterδ ≡ a/σ , whereσ
represents spread of the Gaussian. The inverse ofδ in (8) incorporates the property
that the overlap grows asσ >> a . With dielectric sites atx = ±a/2,±3a/2, . . . ,
we assume thatu(x) is a periodic form of identical Gaussian functions peaked at
dielectric sites. Withj an odd integer, we write

u j = σ−1/2π−1/4 exp

[
−
(

2x − ja√
8σ

)2
]

(9)

for the component ofuα(x) centered atja/2. By symmetry, all overlap integrals
have the same value and we obtain

3 = 1

δ

∫ a

−a
dxu−1(x)u1(x) = 1

σδ
√
π

∫ a

−a
exp

[
−
(

2x − a√
8σ

)2
]

× exp

[
−
(

2x + a√
8σ

)2
]

dx (10a)

which reduces to

3 = 2

δ
exp[−(δ/2)2] erf δ (10b)

where “erf” denotes the error function (Abramowitz and Stegun, 1965). The over-
lap has the property that it approaches 2.457 forσ >> a , δ << 1 and decays
exponentially to zero, atσ << a , δ >> 1 (erf δ ≈ 1, for δ &1.25). At δ = 0.8,
3 = 1.58

A more direct study of the interaction of a deuteron and its nearest neighbor is
given in Appendix C, which indicates that in the superconducting phase, at small
separation, the Coulomb singularity is diminished.
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4. COHERENCE LENGTH

We assume that the superconducting state of our system is given by a prod-
uct of Gaussian single-particle states (9) and a product of spin-1 states. As was
previously noted, it has been shown that the ground state of an aggregate of in-
teracting deuterons in a magnetic field includes all spins in the direction of the
imposed magnetic field (Liboff, 1994). Assuming that this property carries over to
the present configuration, we take our ground state for an aggregate ofN bosons
to be given by the symmetric spin-spatial product state

9(r N , SN , t) = 1

N!

∑
P

(
N∏

i=1

ψi (r i )µi

)
exp (−iωNt) (11a)

hωN = EN (11b)

whereEN is the system energy,µi represents the spin state of thei th deuteron
polarized as noted, and in the sum,P represents permutation of theN coordinates
of the system. In the work of Landau and Ginzberg (1950) and Gross (1958),
the ground state of a bose system interacting through a repulsive interaction, was
examined employing a Hartree-Fock approach. A nonlinear Schr¨odinger equation
emerges whose solution (Wu, 1961) is uniform except at the boundaries of the
system where it vanishes.

A measure of wave function overlap in the superconducting phase is given
by the coherence lengthξ . The value of this parameter follows from the Landau-
Ginzburg equation (Landau and Ginzburg, 1950),[

α + β|8|2+ 1

2M

(
h

i
∇ + e

c
A
)2
]
8 = 0 (12a)

where8 is a superconducting order parameter with the property that|8|2 = n,
the superconducting density. The constantsα andβ are parameters related to the
Landau–Ginzberg analysis relevant to the superconducting phase and A is the
vector potential related to the imposed magnetic field. The conherence lengthξ is
given in terms ofα as follows (Marder, 2000; Pischke and Bergersen, 1989; Wu,
1961).

ξ2 = h2

4M |α| (12b)

In the first approximation ofξ the imposed magnetic field vanished. The corre-
sponding spatially uniform solutions are

|8|2 = 82
0 ≡ −α/β, or80 = 0 (12c)
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With β > 0, the real solution80 corresponds toα < 0 and we set

γ ≡ 8

80
(12d)

The Landau-Ginzburg equation (12a) (with zero vector potential) together with
(12c) gives the following relation (in one dimension).

−ξ2γ ′′ − γ + γ 3 = 0 (12e)

where primes denote differentiation. We may approximate the coherence length
ξ , working with the component wave function (11). Choosingj = 1, deleting
subscripts and following (12d) we set,

ũ ≡ u/u0 = exp(−φ2); φ ≡ 2x − a

9ω
(13a)

whereu0 = u(φ = 0) andx is displacement at about the radiusR. Note the values,

φ′(x) = 2

9σ
, φ′′(x) = 0, φ(0)= − a

9σ
(13b)

Without loss in generality we evaluate the elements of (12e) at the site,x = 0.
There results

2ξ2 =
(

9σ

2

)2 e−φ
2
(1− e−2φ2

)

1− 2φ2
(13c)

whereφ = φ(0)= −a/9σ = −δ/9. Recalling the estimate in (10), we setδ ≈ 0.8.
Inserting this value in (13c) we find,ξ ≈ 0.566σ . It follows that for the wave
function (11) the coherence length is approximately equal to the spread of the
Gaussian per periodic element of the wavefunction (11). We conclude that there
is significant overlap of this wave function in the superconducting current loop.
We take notice also of the fact that the coherence length,ξ ' 0.566σ ' 0.45a '
2 Å<< d , the interior diameter of the superconducting current tunnel.

5. FUSION REACTIONS

The fusion equations relevant to this study, together with energy release and
approximate cross-sections (in barns, 1b = 10−24cm2) (Gladstone and Lovberg,
1960; Jarmie and Segrave, 1957) at characteristic energies, are given by

d + d→ He3(0.82)+ n(2.45) (14a)

d + d→ t(1.01)+ p(3.02) (14b)

5µb, p+ d→ He3+ γ + 5.5 MeV (14c)

7µb, p+ t → α + γ + 19.8 MeV (14d)
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whereα, d, n, and t represents an alpha particle, deuteron, neutron, and triton,
respectively, and parenthetical numbers are energies in MeV. Cross-sections of
the first two interactions areσ ≈ 0.5b (Gladstone and Lovberg, 1960; Jarmie and
Segrave, 1957) whereas cross-sections of the latter two interactions are too small
at given energies and may be disregarded. The processes (14a,b) occur with equal
probability. We note that the particles that enter the host aren, p, t, α, andHe3.
Reactions between these particles and the host as well as other emitted particles
are (Gladstone and Lovberg, 1960; Jarmie and Segrave, 1957)

4 mb, d + He3→ α(3.6)+ p(14.7) (15a)

d + t → α(3.5)+ n(14.1) (15b)

Li 6+ n→ α + t + 4.6 MeV (15c)

5 mb, Li 6+ d→ [Be8] → 2α(22.4) (15d)

5 mb, Li 6+ t → α + He5+ 15.15 MeV (15e)

The cross-section for the reaction (15b) isσ ≈ 5b. In (15c), the cross-section is
proportional to the reciprocal of the interparticle velocity. However, a resonant
neutron absorption occurs at 2.5 MeV with cross-sectionσ ≈ 3.0b and a spread
of ±0.5 MeV (Brune and Schmidt, 1974; McLaneet al., 1988). This resonance
matches well with the 2.45 MeV neutron release in (14a). (A note of caution regard-
ing notation: In the preceding relations,n represents a neutron. In the remaining
analysis,n represents deuteron number density in the confinement tunnel.)

6. FUSION MECHANISM

At the critical temperature,Tc, the deuteron current undergoes a transition to
a superconducting state which, at the given current density, represents the ground
state of the system. Because of large wave function overlap of the system, one may
assume that the mean inter-deuteron displacement obeys the relation

〈9(r N , SN)|(r i − r j )|9(r N , SN)〉 ≡ r̄ i j .r ∗D (16a)

where (r i , r j ) are deuteron radii, respectively. [The displacementr ∗D is defined
beneath (6b).] The Hamiltonian of the system may be written

H = H1+ γ H2 (16b)

The term H1 includes the kinetic energies and vector-potential terms of the
deuterons and their Coulomb and lattice interaction energies. Relevant to reaction
(14a),H2 includes terms representing annihilation of deuteron pairs and creation
of correspondingHe3 and neutron pairs as well as kinetic and interaction ener-
gies of these created particles, where bothH1 andH2 are in second-quantization
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representations (Akhiezer and Berestesky, 1982; Constantantinescu and Magyri,
1971). The parameterγ is such that for

r̄ i j > r ∗D, γ = 0, and for̄ri j ≈ r ∗D, γ ≈ 1 (16c)

This description may also be given in terms of energy levels of the system that
include a lower-lying level than the ground-state superconducting level. Namely,
this lower energy level occurs through the interaction (14a). In this (relativistic)
picture, energy is released when the system “falls” to the lower energy state of the
fused particles (Bjorken and Drell, 1964).

7. START-UP REACTIONS

Our fusion process begins with reactions in the superconducting loop. Having
discovered significant wave function overlap in the ring, we calculate the yield on
the basis of this property. Again consider a circle of radiusR= 5 cm. With number-
density given by (6b), and thed − d fusion release,f ≈ 3.0 MeV, we obtain the
yield

Y = n A2πR f(MeV) ≈ 10 (GeV)≈ 1010 eV (17a)

whereA ≈ 10−10 m2, is the cross-sectional area of the tunnel in which the deuteron
current propagates. In this expression we assume that the deuteron current is a lineal
system in which fusion is due to the number of adjacent pairs in the aggregate.
At v ≈ 0.97× 104 m/s (corresponding to 1 eV particles),n = 7.5× 1020 m−3,
e= 1.602× 10−19 C the current in the beam is given by

Id = Anev= 116µA (17b)

This value of deuteron current is consistent with values described in (3)et seq.
due to a rising magnetic field. It is noted that the reactions (14) are a catalyst to
the proposed fusion process. What is important to this process is that particles are
emitted in the interaction, not their energy yield. In this context, we note that the
number of decay products emitted by thed − d reaction (14a,b), is proportional to
the deuteron density in the confinement tunnel, as may be seen in (17a). It follows
that the net yield (19a) will also increase with this deuteron density. However, as
noted in Appendix B, the force exerted on the confinement tunnel wall similarly
is proportional to this density. Thus we have the balance: If this density is too
small, fusion yield drops to inefficient values, whereas if it is too large, the tensile
strength of the tunnel wall is inadequate to maintain the beam.

8. SYMBIOTIC SCHEME

In the proposed symbiotic scheme, with start-up conditions initiated, the
following particle–particle and particle–lattice interactions occur to varying degree
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(with equation numbers of preceding reactions in parentheses) (Brune and Schmidt,
1974; Gladstone and Lovberg, 1960; Jarmie and Segrave, 1957).

n(14a) + Li 6(lattice)→ α + t + 4.6 (MeV)(15c) (18a)

t(15b) + d(lattice)→ α + n+ 17.4 (MeV)(15b) (18b)

t(14bor 15c) + Li 6(lattice)→ α + He5+ 15.15 (MeV)(15e) (18c)

He3(14a) + d(15a)→ α + p+ 18.3 (MeV)(15a) (18d)

In (18a), the neutron emitted in (14a) combines with a lattice deuteron at
σ ≈ 2b with a release of 4.6 MeV. In (18b), the triton of this reaction interacts
with a deuteron of the lattice atσ ≈ 5b with the energy release, 17.6 MeV con-
tributing to a chain reaction. In addition to these reactions the followingHe3 reac-
tions are noted (McLaneet al., 1988):He3(t, d)He4 43%;He3(t ; p, n)He4 51%;
He5(t, p)He4 43%. We list the prevalent reaction,

t + He3→ He4+ p+ n+ 12.1 MeV (18e)

At 0.3 MeV, σ ≈ 30 mb (Brune and Schmidt, 1974; McLaneet al., 1988; Moak,
1953). Thus, the triton of (14b) may react withHe3 of (14a) in accord with the
preceding interaction. The neutron release in the preceding reaction can react with
latticeLi 6 as in (18a), again contributing to a chain reaction.

9. YIELD ESTIMATES

We estimate the yield of the reaction (18a,b). In this scheme, the neutron
emitted in the process (14a) reacts with the latticeLi 6 nucleus at the resonance
2.5 MeV value. In the event that a neutron does not so interact, it will thermalize
and interact with this nucleus with the∝ 1/v cross-section within the sample.
Concentrating on the resonant absorption, we find the range of the neutron in this
crystal1 ' 1500µm (Littmark and Ziegler, 1990). The yield of this component
chain is given by

y = σN,Li nNvNnLi1
3× 4.3 MeV/s (19a)

wherenN , nLi are neutron and lithium densities, respectively, andvN is neu-
tron speed. Withσ ' 3× 10−24 cm2, vN ' 2.17× 104 cm/s,nN ' n = 7.5×
1016 cm−3, nLi ' 4.7× 1022 cm−3, we obtain

y ' 3.34× 1016 MeV/s' 0.27 kW (19b)

In the second component of the chain, (18b) comes into play. The range of a
triton in the host crystal is 200µm. The energy of the neutron in this interaction
is≈ 14.1 MeV and the cross-section is≈5b. Repeating the preceding calculation
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gives

y ' 21.6× 1015 MeV/s' 3.45 kW (19c)

Note in particular, as typical to a chain reaction, products of one reaction
participate in another reaction. Each reaction takes place in a volume of order of
the cube of the range of the reacting particle in Li6D. As derived in (19a,b) typically
this yield is of the order≈kW. But as the chain reaction proceeds, a portion of the
crystal is consumed. An estimate of the yield is given by the volume of the crystal
divided by the cube of the range of one of the charged particles. As a component
of neurons do not react, we introduce an effective fusion-cube edge-length≈5 cm
and effective particle range' 1µm. In addition we assume a probability of 0.01
that deuterons in the superconducting loop fuse. With the microvolume yield'
kW, we then obtain

Y ≈ 23 GW (20a)

If the device operates for 1 ms, the yield is

Y ≈ 0.2 GJ (20b)

For efficiency of the proposed process, the deuteron beam must go to a super-
conducting state simultaneously from an extended state distributed over the whole
current loop. Deuterons are injected into the tunnel at temperature in excess of
the critical temperature,Tc. When current fills the tunnel atI = 110µA, the fuel
line cuts off at the time,T ≈ π × 10−5 s. After an extended state is established,
the temperature drops to the critical value,Tc, and the beam goes uniformly to
the superconducting state. Thus, during the first, say, 20 revolutions, an extended
state is established, at which time the temperature drops to the critical value and
the current beam becomes superconducting. The current is then consumed in ap-
proximately 10 revolutions. The corresponding time interval is obtained from the
circular velocity given above (17b) and the stated radius of the ring, 0.05 m,

t ' 2π × 10−4 s≈ 1 ms (20c)

which is small compared to the risetime of the applied magnetic field. The three
characteristic times that enter in this device are:

(injection time,T ; rise time,τ ; operational time,t) = π (10−5 s; 10−4 s); 1 ms
(20d)

10. CONCLUSIONS

A symbiotic process for attaining thermonuclear fusion was described in
terms of effecting a superconducting current of deuterons with current driven in
accord with Faraday’s law. It is argued that for sufficiently large wave function
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overlap in this phase, deuterons will fuse. The host material is a section of single
crystal Li6D with cubic crystal symmetry that includes a circular tunnel for the
deuteron current. In the second phase of the fusion scheme, particles emitted from
the reacting deuteron current interact with themselves and the Li6D host crystal.
A chain reaction ensues which, for a cubic fuel sample of edge length 15 cm,
gives a yield≈02 GJ in approximately 1 ms. Injection and magnetic risetime
intervals are described and the interval over which the beam goes simultaneously
to a superconducting phase from an extended state that fills the current tube.

11. APPENDIX A

In this appendix an approximate value is obtained for the tensile strength
of tunnel-wall material required to confine the deuteron beam against Coulomb
expansion. A rough estimate of the related force may be calculated by assuming a
linear current model of the beam. The diameter of the circular current loop is 2R.
Let ρL denote related linear charge density given by [recall data above (17b)]

ρL = Q

2πR
; Q = 2πR en A; ρL = en A= 12× 10−9 C/m (A1)

Consider that a diameter intersects the circumference of the circular current loop
at the pointO, at the right of the circumference. A point on the lower semicricle
of the current loop is given by the intersection of a secant fromO to the point at
the angleθ that the secant subtends with the diameter. We refer to this intersection
point as the “pointθ .” An element of charge in the current loop at the pointθ is

dq = ρL2R cosθ dθ (A2)

The differential of electric field at the pointO from the charge element atθ is
given by

d E = ρL2R cosθ dθ

4πε0(2R cosθ )2
(A3)

This field is in the direction of the secant from the pointθ to O. Because of
symmetry of the circle, it suffices to integrate this form over the lower semicircle.
In this process the surviving component of electric field is in the direction of the
diameter throughO.

E =
∫ θm

0

2ρL R cosθ dθ

4πε0(2R cosθ )2
= ρL

8πε0R

∫ θm

0

dθ

cosθ
≡ D ln

(√
1+ sinθ

1− sinθ

)θm

0
(A4)

where D is the implied parameter. We take the minimum displacement on the
circle of charge to be given by the interparticle displacementn−1/3 which gives
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(with n1/3 ' 4.3× 107 m−1 andR= 0.05 m)

cosθm = 1

2Rn1/3
≡ ε << 1 (A5)

It follows that sinθm ' 1− (ε/2); θm.π/2. Inserting these values in (A5) gives

E ' D| ln(4/ε)| = ρL

8πε0R
| ln(4/ε)| = 8.71× ρL

8πε0R
(A6)

In the preceding, absolute magnitudes are taken because the integral in (A4) is
positive. With

ρL

8πε0R
= 1.18× 107

we obtain

E = 12× 108V/m(or Nt/C) (A7a)

With (A1) we find that in 1 cm of beam length there is

q = ρL × 10−2C = 12.2× 10−11C (A7b)

amount of charge. With (A7a) this value gives the force per length,

f = q E = 1.31× 10−3Nt/cm, (A8)

which is a measure of the tensile strength of the tunnel wall required to contain the
deuteron beam against Coulomb expansion. In Appendix B, interaction between
deuterons in the superconducting state is evaluated that significantly increases this
criterion.

APPENDIX B

In this appendix we make a very rough estimate of the mean inter-deuteron
force between deuterons in the superconducting state, effects of which must like-
wise be constrained by the tunnel wall. Motivated by Appendix C, it is assumed
that the interpenetration of deuteron charge clouds of the extended state has an
harmonic form. Furthermore, for a narrow beam, if a deuteron is repelled by a
nearest neighbor, it is soon repelled in the opposite direction by another deuteron.
For the inter-deuteron charge-cloud force we write

F ≈ gx+ kx2 · · · , g > k > · · · (B1)

where constants represent “spring constants.” With (9) we write

〈F〉 ≈ 1

σ
√
π

∫ a

−a
exp

[
−
(

2x − a√
8σ

)2
]

kx2 exp

[
−
(

2x + a√
8σ

)2
]

dx



P1: GDX

International Journal of Theoretical Physics [ijtp] pp885-ijtp-467274 June 16, 2003 14:21 Style file version May 30th, 2002

770 Liboff

= k

σ
√
π

∫ a

−a
exp 2

[
−
(
−4x2+ a2

8σ 2

)]
x2 dx = k

σ
√
π

×
(

exp
2a2

8σ 2

)∫ a

−a
exp

(
− x2

2σ 2

)
x2dx (B2)

Here it was noted that the first term in (B1) vanishes because of symmetry. The
remaining constant,k, has dimensions of Nt/m2. To perform this integral we in-
troduce the transformation of variables:

x2 = y, dx = dy

2
√

y

If we label the integral on the right of (B2),I , then with the preceding transfor-
mation,

I = 1

2

∫ a2

−a2
exp(−by)

√
y dy, b ≡ (2σ 2)−1 (B3)

I = 1

2

[
−
√

y

b
exp(−by)+

√
π

2b3/2
erf (

√
by)

]a2

−a2

(B4)

where, we recall,

erfz= 2√
π

∫ z

0
exp(−t2) dt

In accord with limits described in Section 3, we set,σ = 2a which gives,b =
1/8a2. The argument of the erf function is then, 1/

√
82= 0.3535, for which erf

(0.3535)= 0.383. In evaluatingI , only the real component is maintained. We
obtain

I = 8a3

2

[
− exp

(
−1

8

)
+
√
π (8)1/2

2
erf

(
1√
8

)]
= 0.016a3

The exponential factor multiplying the integral in (B2) is very close to unity, so
that

〈F〉 ≈ 0.016a3

(
k

σ
√
π

)
(B5)

For the force constant,k we choose the simplest form,k = e22
√
π/ε0a4, so that

a3k/σ
√
π = e2/ε0a2, and

〈F〉 = 0.016(e2/ε0a2) = 0.016 (17.44× 10−9) = 0.279× 10−9Nt (B6)

To employ this result for tunnel properties, we calculate the mean force per length.
This is accomplished by multiplying〈F〉 by the deuteron line density in 1 cm.
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With(1A) we writen A= nL = ρL/|e| = 7.5× 108/cm so that the effective inter-
deuteron force per centimeter is given by

〈F〉 = nL〈F〉 = 0.220Nt/cm (B7)

This result indicates that forces exerted by inter-deuteron interactions exceed forces
due to Coulomb expansion effects described in Appendix A by two orders of
magnitude.

APPENDIX C

A significant component of this paper is the hypothesis that in the supercon-
ducting state, the Coulomb interaction between deuterons is moderated. In this
appendix we are concerned with this property in the domain of smalla corre-
sponding to small displacement between adjacent deuterons.

The potential-energy interaction integral between deuterons atx = ±a/2 is
given by (Jackson, 2001)

V = K

σ 2π

∫ C

−C

∫ C

−C
exp

(
−1

8

(
2x′ + a

σ1

)2
)

exp

(
−1

8

(
2x − a

σ1

)2
)

dxdx′

|x − x′|
(C1)

whereK is the SI constant,

K ≡ e2

4πε0

(with dimensions of energy-length) andC ≡ Wa/4, W ≥ 8. These limits corre-
spond to an interval four times the displacement of Gaussians. The factor (πσ 2)−1,
in the coefficient in (C1), in the limit of small (σ1, σ ), relates to the product of
two delta functions with one particle atx = −a/2 and the other atx = a/2. In
the present study we take the primed particle to be fixed atx = −a/2, which is
accomplished by taking the limitσ1→ 0

There results

V = K

σ
√
π

∫ C

−C

∫ C

−C
δ(x′) exp

(
−1

8

(
2x − a

σ

)2
)

dx dx′

|x − x′|

= K

σ
√
π

∫ C

−C
exp

(
−1

8

(
2x − a

σ

)2
)

dx

|x| (C2)

This integral has a pole atx = 0. However we note that in the physical config-
uration, the closest approach of two deuterons is given by the effective diameter
of a deuteron, which we label 2b. Let the integrand in (C2) be labeledf (x). As
this function is very nearly even (especially in the domain of small displacement
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between deuterons), to facilitate calculation, we introduce the closely allied even
function

F(x) = 1

2
[ f (x)+ f (−x)] (C2a)

Then forb > 0, integratingF(x) over the limits (−C,−b), (b, C) returns the same
result which, when added, gives

V ' K

σ
√
π

a

σ 2
(C − b)L(b) ' K√

π

a

σ 3
C L(b) ' K√

π

Wa2

4σ 3
L(b) (C3)

asC >> b . The factor L(b)∝ ln(b) serves to remind us that (C3) becomes loga-
rithmically singular asb→ 0. In the present limit,a << σ andσ is large, so that
(C3) reduces the Coulomb singularity. Thus we find that in the superconducting
phase, the inter-deuteron force is decreased. Note that the potential C(3) is har-
monic in the displacementa. This property lends consistency to Appendix B in
which the harmonic charge-cloud model in the superconducting phase was em-
ployed. It has been noted that the Gaussian wave function (9) is a model form.
As described previously, in the study of an aggregate of repulsive bosons, (Gross,
1958; Landau and Ginzberg, 1950; Wu, 1960), it was found that the ground state
of the system is uniform. With this observation, it is possible that the potential of
interaction, (C3) may be further reduced because of an increase in the effective
spread of the wave function.

The particle picture emerges in the limit (σ1, σ )→ 0. As noted above, in this
limit the exponential factors in the integrand (C1) go to respective delta functions
representing particles at±a/2. The Coulomb singularity then occurs in the limit
a→ 0, with no modifying factor. In the superconducting state (9), the width of
the Gaussian components are always finite, thereby circumventing this unmodified
singular behavior.
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